
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 15: Product Codes
March 13, 2024

Lecturer: John Wright Scribe: Samyak Surti

1 Recap of Topological Codes

Let us recall the toric code [Kit97, Kit03]. Defined on a cellulated torus, the toric code is a
good candidate for a quantum error correcting code as all of its stabilizer checks are local.
This has significance, not only from the perspective of implementing such codes on physical
devices, but also from the perspective of quantum coding theory. In particular, the Toric
code is an example of a Quantum Low-Density Parity Check (QLDPC) code, as each
qubit is involved in at most a constant number of checks and each parity check involves at
most a constant number of qubits. Hence, the term ”low-density” is appropriate.

Figure 1: A quantum code defined on a cellulated torus. We associate
the top and bottom edges and the left and right edges. [Kit03]

Of particular interest is seeing how far this idea of locality can be pushed to construct
so-called ”good” QLDPC codes where the number of encoded logical qubits and the code
distance grow linearly with respect to the number of physical qubits in the system (Its
important to reiterate here that the term ”locality” can be interpreted in two different ways;
one in reference to physical locality and another in terms of the number of checks each qubit

1



is involved in and the number of qubits each check involves). Naturally, the next step lead
to trying out cellulations of more general topological surfaces by varying both genus and
dimension. Unfortunately, this lead to codes that only traded encoding rate for distance and
vice versa, without making progress towards ”good” QLDPC codes. In fact, when restricting
ourselves to 2D topological surfaces, Bravyi, Poulin, and Terhal set forth the following bound:

Theorem 1.1 (Bravyi-Poulin-Terhal Bound [BPT10]). For an [[n, k, d]] quantum error cor-
recting code defined on a 2D topological surface

kd2 = O(n)

Since the toric code saturates this bound, it is the best code in this regime. Thus we
must look elsewhere, perhaps abandoning physical locality of our checks, but retaining the
second interpretation of locality, with respect to the relation of parity checks and qubits.

2 Building up to Hypergraph Product Codes

The road to ”good” QLDPC codes begins with the Hypergraph Product Code due to Tillich
and Zemor in 2009 [TZ14]. To build up to these codes, we begin by drawing inspiration from
a related procedure for classical linear codes—tensor products of classical linear codes. To
understand this construction, we first need to consider an alternate graphical perspective of
classical linear codes.

2.1 An Alternate Representation - The Tanner Graph

Definition 2.1 (Tanner Graph). Let C be an [n, k, d] classical linear code with parity checks
given by P1, ..., Pl.To this code, we can associate a bipartite graph called the Tanner Graph.
One side of this graph has nodes corresponding to our l parity checks and the other has
nodes corresponding to bits of our code. Pictorially, we have the following:

2



The Tanner graph admits a natural symmetry along the two sets of nodes in the graph.
That is, we can swap the roles of the variables and the parity checks, admitting a different
code. In this new ”transpose” code, the top blue nodes are now the parity checks and the
bottom red nodes are the variables or bits. Let us formally define this code:

Definition 2.2 (Transpose Code). For an [n, k, d] code C with parity checks P1, ..., Pl acting
on bits V1, ..., Vn, we can define the code CT in terms of the parity checks for code C. In
particular, CT has parity checks P ′

1, ..., P
′
n and variable nodes V ′

1 , ..., V
′
l . Again, pictorially

we have

As it is defined, CT is not necessarily uniquely associated with our original code C, as it
is a property of C’s Tanner graph. We could conceivably add redundant parity checks to C,
which would result in a code CT defined over a larger number of bits. Since our parity check
matrices essentially serve as adjacency matrices for our Tanner graphs, we can define them
as the following:

HC =


P1

P2

...
...

...
Pl


and the definition of the parity check matirx for CT follows naturally as the transpose of

HC :

HCT = HT
C =

 . . .

P1 P2 . . . Pl

. . .


Given HC and HCT , let us now define the subspaces corresponding to codes C and CT ,

as well as their dimensionality. For a general classical linear code, the null space (or kernel)
of the parity check matrix corresponds to our set of codewords. Thus

C = ker(HC), dim(C) = dim(ker(HC)) = n− rank(HC)

3



CT = ker(HCT ) dim(CT ) = dim(ker(HCT )) = l − rank(HCT ) = l − rank(HC)

We can relate the dimensionality of these codes with the rank of HC . In particular

rank(HC) = n− dim(C) = l − dim(CT )

∴ dim(CT ) = (l − n) + dim(C)

To further understand this transpose code, let us consider the following example:

Example 2.3. Let C be an [n, k, d] code such that its parity checks are all linearly independent.
Therefore, the number of parity checks is l = n− k. By our equation above, for code CT , we
have that

dim(CT ) = (l − n) + k = (n− k)− n+ k = 0

Let’s understand why we end up with a transpose code of dimension 0. We know that
for a codeword v ∈ CT we have HCT v = HT

Cv =
−→
0 . However, under the assumption that

HCT has full column rank, by the rank-nullity theorem, we know that dim(Null(HCT )) = 0.
Therefore, the dimension of the transpose code is 0.

2.2 Tensor Products of Classical Linear Codes

Definition 2.4 (Tensor Product Code). Let C1 be an [n1, k1, d1] classical linear error correct-
ing code with generator matrix G1 and let C2 be an [n2, k2, d2] code with generator matirx
G2. We can specify C1 and C2 by their encoding maps:

C1 : m ∈ {0, 1}k1 E1−→ G1 ·m

C2 : m ∈ {0, 1}k2 E2−→ G2 ·m

Then the tensor product code C1 ⊗C2 is given by the following two-stage encoding
map:

X =


x11 x12 . . . x1k2

x21 x22 . . . x2k2
...

...
. . .

...
xk11 xk12 . . . xk1k2


The idea behind defining an input bitstring as a matrix is that each column corresponds to
an input for the encoding map for C1 and each row corresponds to an input for C2’s encoding
map. Naturally, we perform the encoding map by sequentially applying E1 to each column
of X and E2 to each row of the resulting matrix:

X
E1−−→ Y =


y11 y12 . . . y1k2
y21 y22 . . . y2k2
...

...
. . .

...
yn11 yn12 . . . yn1k2

 E2−−→ Z =


z11 z12 . . . z1n2

z21 z22 . . . z2n2

...
...

. . .
...

zn11 zn12 . . . zn1n2


4



This sequential encoding can equivalently be stated in terms of multiplication by generator
matrices of our constituent codes. Therefore, more succinctly

Z = G1XGT
2

Interestingly, the above expression tells us that we didn’t necessarily have to encode with
G1 followed by G2. We just as easily could have applied the encoding maps in the opposite
order. The result of this sequential encoding in terms of the matrix picture is the following:
After applying G1, every column is now a codeword of C1 and after applying G2, every row
is a codeword of C2. Let us now understand how this matrix is constructed from message
bitstring m1 of length k1 and message bitstring m2 of length k2 being encoded by E1 and E2

respectively. Let X = m1m
T
2 . Then

X = m1m
T
2 =


. . .
. . .

...
... m

(i)
1 m

(j)
2

. . .


where m

(i)
1 m

(j)
2 = 1 if m

(i)
1 = m

(j)
2 = 1, and 0 otherwise. Therefore, applying the generator

matrices G1 and G2, we have
G1XGT

2

= G1(m1m
T
2 )G2

= (G1m1)(G2m2)
T

= c1c
T
2

for codewords c1 ∈ C1 and c2 ∈ C2. In general, however, the X matrix can be any binary
matrix and isn’t necessarily the outer product of two message vectors. The above construction
simply provides intuition when starting from two linear codes C1 and C2.

Fact 2.5. The tensor product code C1 ⊗ C2 is an [n1n2, k1k2, d1d2] linear error correcting
code.

Proof. The code C1 ⊗C2 must be linear as we have specified a linear map that takes us from
message matrix X to codeword G1XGT

2 for generator matrices G1 and G2 corresponding to
the constituent codes C1 and C2.

Suppose X ̸= 0. When flattened, X has length k1k2 and the encoding map takes it to
matrix Z which when flattened has length n1n2. This gives us the first two parameters of
our code. For linear codes, we know that the minimum Hamming weight of any codeword
is the distance of our code. Therefore, for each of C1 and C2, let c1 and c2 be codewords
with Hamming weight d1 and d2. Taking the outer product of these codewords, we get
that the resulting matrix c1c

T
2 must have a 1 at position (i, j) if and only if c

(i)
1 = c

(j)
2 = 1.

Therefore, the resulting codeword of C1 ⊗C2 must have Hamming weight of at least d1d2, as
c
(i)
1 = c

(j)
2 = 1 at at least d1d2 positions.

5



Let us consider an alternate proof. Suppose again we start with X ̸= 0. Then encoding
each column of X via encoding map E1 will leave us with columns of length n1 that each
have Hamming weight at least d1. Subsequently encoding each row of the resulting matrix
Y = G1X will result in rows of length n2, each with Hamming weight at least d2. Therefore,
we have d1 rows that are encoded to encoded bitstrings of Hamming weight at least d2,
resulting in an encoded matrix Z with Hamming weight at least d1d2.

Let us consider an alternate characterization of the tensor product code

Fact 2.6. C1 ⊗ C2 = {Z ∈ {0, 1}n1×n2 : cols ∈ C1 rows ∈ C2}

Proof. Let us begin by considering the forward inclusion. This follows from the fact that
we are applying two sequential encodings on columns and rows of X and the order in which
we apply these encodings doesn’t matter. Our last step can be to apply E2 to every row of
G1X, which gives us that every row of Z = G1XGT

2 is a codeword of C2. Equivalently, the
last step can be to apply E1 to every column of XGT

2 , such that every resulting column of
Z = G1XGT

2 is a codeword of C1. It therefore follows that C1 ⊗ C2 ⊆ {Z ∈ {0, 1}n1×n2 :
cols ∈ C1 rows ∈ C2}

Let us now prove the reverse inclusion. Suppose we have some matrix Z that satisfies the
above property. Then, to prove that Z ∈ C1 ⊗ C2, we must show that Z passes the parity
checks of our tensor product code. From Figure 2, we have that in our new Tanner graph, we
have an edge between a check node (P

(l)
1 , V

(j)
2 ) and variable node (V

(i)
1 , V

(j)
2 ) if there existed

an edge between P
(i)
1 and V

(i)
1 in our original code (There is a slight abuse of notation here

but the first superscript i should be different from the second i). In matrix form, if we are
fixing the index j for our variable node’s second element, then it implies that our check is
running across a column of Z. This corresponds to checking if a column of Z is in the code
C1. This, however, is true by definition of Z. Similarly, we also have an edge between a check
node (V

(i)
1 , P

(m)
2 ) and (V

(i)
1 , V

(j)
2 ). For this check, we are fixing the row index of Z given by i

and performing a check across a row of Z with parity check P
(m)
2 . Once again, by definition,

the rows of Z are codewords of C2, all of these checks pass. Therefore, such a matrix Z must
be a codeword for C1 ⊗ C2.

This is a very nice fact because we now have a sense of the parity checks of our tensor
product code. Suppose code C1 has variables V1 and parity checks P1 and code C2 has
variables V2 and parity checks C2. For some Z ∈ {0, 1}n1×n2 , if we want to know if Z is in
C1 ⊗ C2, this requires performing each of P1 on each column of Z and each of P2 on each
row of Z. We can visualize these checks in the following way:

6



Figure 2: Parity checks corresponding to each variable node of tensor
product code C1 ⊗ C2 and corresponding Tanner graph structure.

Claim 2.7 (Generator Matrix for C1 ⊗ C2 is G1 ⊗G2). Proof. Consider a matrixX ∈ {0, 1}k1×k2 =
m1m

T
2 , for m1 ∈ {0, 1}k1 and m2 ∈ {0, 1}k2 . Then, viewing X as a flattened vector as opposed

to a matrix, we can instead write Xflat = m1 ⊗m2, as a flattened vector. This is just the
tensor product of our two message vectors. Therefore, the natural picture for encoding Xflat

via the encoding for our tensor product code C1 ⊗C2 is to apply generator matrix G1 to the
first tensor factor m1 and G2 to th esecond tensor factor m2.

(G1 ⊗G2)(m1 ⊗m2)

= (G1m1 ⊗G2m2)

Re-expressed in the matrix picture, we get that the above expression is equal to

G1m1(G2m2)
T

= G1m1m
T
2G

T
2

= G1XGT
2

which is equivalent to the matrix codeword Z we had derived above.

7



3 Quantum Product Codes

Now that we’ve established tensor product codes in the classical setting, let us work towards
defining an analogous structure in the quantum setting. In fact, we’ll see the classical tensor
product code encapsulated in this quantum construction.

The key idea here is arises from the following observation: For topological quantum codes,
we were working with 2-dimensional objects (faces of the lattice), 1-dimensional objects
(edges of the lattice), and 0-dimensional objects (vertices of the lattice). In this picture, our
Z checks and X checks corresponded to faces and vertices of these lattices, respectively, while
our qubits corresponded to edges of this lattice. Pulling this idea back to the classical setting,
we now are working with collections of only 1 and 0-dimensional objects, as we only have
one type of error. The driving question here is then how can we take classical codes,
which are these 1-dimensional objects, and generalize them to quantum codes,
which can be represented by 2-dimensional objects? To illustrate this idea, let us
begin with the classical repetition code:

Figure 3: Classical 3-Bit Repetition Code Each check is connected
to variable nodes in a cyclic fashion. Notice that the last check is not
really needed, as it is dependent on the first two checks. However, in
transitioning to the quantum picture we hang on to it.

Let us now associate this with a 1-dimensional object as we were claiming:

The red vertices can be thought of as our 0-dimensional objects or our checks and the
1-dimensional objects are our edges or bits. A nice property of this particular code is that it
really doesn’t matter which object we denote to be our variables or our checks. Looking at
the Tanner graph, if we were to instead consider the transpose code, we get the exact same
code back. This is evident from the cellulation of the circle as well.

8



Let’s propose using these 1-dimensional objects as building blocks for a 2-dimensional
object that corresponds to a quantum code. One natural transformation to do is to take a
product of our 1-dimensional objects. In this case, it turns out the correct product to apply
is a Cartesian product between two of these one-dimensional objects (See Figure 4 below).

Figure 4: Construction of Toric Code

We can generalize the cellulation of our one-dimensional objects to the 2-dimensional
setting. To do so, let us first define some product rules between 1-chains and 0-chains:

With these rules established, let us work through taking the product of the 1-dimensional
objects’ cellulations. Since we’re working with topological surfaces here, it is valid to consider
deformed versions of our 1D cellulations for the purposes of this calculation.

9



Figure 5: Using the product rules above what results is the cellulation
of a torus. An important feature to note is that the green edges here
are a result of multiplying the semi-circle edges (1-chains) with other
1-chains and 0-chains.

Ultimately, we get the cellulation of a torus (we are restricting ourselves to a 2D plane so
it doesn’t look like a torus, however we associate the top edge of the lattice with the bottom
edge, and associate the left edge with the right edge). A nice feature of this picture is that
the individual parity check relationships from each of our repetition codes is maintained in
the toric code picture. Naturally, this toric code picture carries over other aspects of our
constituent classical repetition codes as well. Say we wanted to figure out the distance of our
resulting toric code. Looking back at the repetition code, the distance corresponds to the
minimum Hamming weight of a non-zero codeword, which in this case is 3 for codeword 111.
Recall for the toric code that error operators that correspond to the distance of the code
look like non-contractible loops around the torus (See the red and blue loops on Torus at
the bottom of Figure 4). We can see this as arising from the codewords 111 from each of our
repetition code, resulting in non-trivial loops in the toric code picture. This construction—
taking the product of two classical codes—is one example of, and general formulation for
Hypergraph Product Codes

3.1 The Hypergraph Product Code

We’ve already seen the Shor-9 Qubit code as a way to generalize from classical to quantum
error correction via concatenation of encoding maps. By comparison, the hypergraph product
construction allows us to choose any two classical linear codes, take their product, and obtain
a quantum code. More importantly, as we’ll see, we actually end up with quantum CSS
codes. This is crucial because we no longer have to search for classical codes whose parity

10



check matrices satisfy the CSS orthogonality conditions. It is an aspect that is baked into
our resulting quantum code.

Definition 3.1 (The Hypergraph Product Code). Let (A1, A0) be a chain complex with
boundary map ∂A : A1 → A0. Here A1 contains 1-dimensional objects (edges) denoted
eA and A0 contains 0-dimensional objects (vertices) denoted vA. We define an analogous
chain complex (B1, B0) with boundary map ∂B : B1 → B0 with edges eB and vertices vB.
Therefore, the hypergraph product code is given by the following length-2 chain complex:

Figure 6: Hypergraph Product Code Construction Length-2
chain complex corresponding to hypergraph product of two length-1
chain complexes of classical linear codes.

Figure 7: We can use the hypergraph product construction of the
toric code to see how checks (vertices) and variables (edges) from the
repetition codes relate to our two types of checks (faces and vertices)
and variables (edges) of our resulting quantum code:

11



What’s interesting to see in Figure 6 is that the tensor product code from the classical
setting (See Figure 2) is encased in this hypergraph product code (specifically the transpose
of the tensor product code as the role of the variable nodes and the check nodes have been
reversed). One important difference to note is that Figure 2 is a Tanner graph of our classical
code while Figure 6 is a chain complex of our quantum code. To make the connection with
the classical setting even stronger, an alternate picture of the hypergraph product code is an
aspect of it’s name—hypergraph. In fact, Tillich and Zemor prescribed the construction of
these quantum codes by taking Cartesian graph products of Tanner graphs of classical codes,
which results in a Tanner graph that has an analagous structure to the chain complex in
Figure 6. This can also be viewed as a tripartite variant of the Tanner graph if we consider
the X checks and Z checks separately.

Figure 8: Cartesian Product of Tanner Graphs - Hypergraph
Product Construction

Let us now consider what happens if our input classical codes are low-density parity
check codes. For an LDPC code, we have a degree l Tanner graph if each check node is
connected to at most l variable nodes and each variable node is connected to at most l check
nodes. Examining Figure 6, we have that each of the variable nodes will be connected to at
most l of the Z checks and at most l of the X checks. Likewise, each of the X and Z checks
will be connected to l qubits on the left summand of our direct sum and l qubit on the right
summand. Therefore, the resulting Tanner graph for our Quantum LDPC code will be of
degree 2l.

3.2 Proving CSS Orthogonality of Hypergraph Product Codes

Let us prove that the codes resulting from this hypergraph product do indeed satisfy the
CSS orthogonality condition. Recall, for a quantum code specified by X parity check matrix

12



HX and Z parity check matrix HZ , it must be the case that

HXH
T
Z = 0

Equivalently, we have that the rows of HZ are codewords of the code specified by HX and
vice versa.

To understand what our parity checks are, let’s compute the boundary operators for our
length-2 chain complex in Figure 6, starting with ∂2. Going from (eA, eB) to (vA, eB), we
are applying the boundary operator ∂A on the first element and leaving the second element
unchanged, giving us ∂A ⊗ I. Likewise, from (eA, eB) to (eA, vB), we are applying an identity
to our first element and boundary operator ∂B to the second, giving us I ⊗ ∂B. We can
use this same reasoning to define ∂1 going from the 1D objects to the 0D objects, using the
fact that maps from edges (1D objects) to vertices (0D objects) of type A or B invoke the
boundary operator ∂A or ∂B respectively. Else, if the element is left unchanged going from
the 1D layer to the 0D layer, we apply an identity. In totality, we can therefore define ∂2
and ∂1 as

Given that these are contiguous boundary operators of chain complexes, a property that

13



necessarily holds true is
∂i∂i−1 = 0

In this particular case, we have
∂2∂1

= (∂A ⊗ I)(I⊗ ∂B) + (I⊗ ∂B)(∂A ⊗ I)
following from the fact that we are multiplying block matrices.

= (∂A ⊗ ∂B) + (∂A ⊗ ∂B)

= 0

as all of our addition is being done modulo 2. Thus, these boundary operators satisfy the
CSS orthogonality condition. In particular, letting

HX = ∂2

and
HZ = ∂T

1

we get
HXH

T
Z = ∂2∂1 = 0

One final informative picture to understand the action of these boundary operators is the
following:

14



At each level, we can imagine that each of the black boxes represent matrices where
elements of these matrices tell us whether a particular pair of vertices and edges from A and
B are included in our 0 and 1-chains, respectively. The red and blue edges going between
these boxes represent the boundary operators, whereby the red edges take us from 1-chains
to boundaries of these 1-chains in A and blue edges take us from 1-chains to boundaries of
these 1-chains in B. This picture is very reminiscent to the tensor product of classical codes
(See Figure 2). Furthermore, the boundary operators ∂2 and ∂1 we wrote down above tell us
exactly how 2-chains are mapped to their boundary 1-chains and how 1-chains are mapped
to their boundary 0-chains.

References

[BPT10] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeoffs for reliable quantum
information storage in 2d systems. Phys. Rev. Lett., 104:050503, Feb 2010. 1.1

[Kit97] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian
Mathematical Surveys, 52(6):1191, dec 1997. 1

[Kit03] Alexei Kitaev. Fault-tolerant quantum computation by anyons. Annals of physics,
303(1):2–30, 2003. 1, 1

[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum ldpc codes with positive rate
and minimum distance proportional to the square root of the blocklength. IEEE
Transactions on Information Theory, 60(2):1193–1202, 2014. 2

15


	Recap of Topological Codes
	Building up to Hypergraph Product Codes
	An Alternate Representation - The Tanner Graph
	Tensor Products of Classical Linear Codes

	Quantum Product Codes
	The Hypergraph Product Code
	Proving CSS Orthogonality of Hypergraph Product Codes


